First you need to load the RMacoqui package:
library(RMacoqui)
Now load and take a look at the example datasets that come with the package:
data(amphib)
head(amphib)
## aly_cis aly_dic aly_obs buf_buf buf_cal dis_gal dis_jea dis_pic hyl_arb
## 1 0 0 1 1 1 1 0 0 1
## 2 0 0 1 1 1 1 0 0 1
## 3 0 0 1 1 1 1 0 0 1
## 4 0 0 1 1 1 1 0 0 0
## 5 0 0 1 1 0 1 0 0 1
## 6 0 0 1 1 0 1 0 0 1
## hyl_mer pel_cul pel_ibe pel_pun pel_per ran_dal ran_ibe ran_pyr ran_tem
## 1 0 0 0 0 1 0 1 0 1
## 2 0 0 0 0 1 0 1 0 1
## 3 0 0 0 0 1 0 1 0 1
## 4 0 0 0 0 1 0 1 0 1
## 5 0 0 0 0 1 0 0 0 0
## 6 0 0 0 0 1 0 1 0 1
data(simil)
head(simil)
## aly_cis aly_dic aly_obs buf_buf buf_cal dis_gal dis_jea dis_pic hyl_arb
## 1 1.000 0.113 0.330 0.361 0.430 0.767 0.265 0.000 0.636
## 2 0.113 1.000 0.000 0.081 0.121 0.103 0.491 0.000 0.056
## 3 0.330 0.000 1.000 0.670 0.662 0.508 0.356 0.141 0.676
## 4 0.361 0.081 0.670 1.000 0.949 0.528 0.309 0.031 0.621
## 5 0.430 0.121 0.662 0.949 1.000 0.530 0.376 0.055 0.622
## 6 0.767 0.103 0.508 0.528 0.530 1.000 0.185 0.000 0.805
## hyl_mer pel_cul pel_ibe pel_pun pel_per ran_dal ran_ibe ran_pyr ran_tem
## 1 0.676 0.581 0.633 0.300 0.361 0.000 0.459 0.000 0.000
## 2 0.275 0.129 0.485 0.231 0.081 0.000 0.000 0.000 0.000
## 3 0.259 0.612 0.120 0.643 0.692 0.165 0.555 0.113 0.497
## 4 0.430 0.784 0.298 0.447 0.993 0.039 0.294 0.022 0.227
## 5 0.500 0.833 0.365 0.536 0.949 0.067 0.312 0.034 0.215
## 6 0.558 0.594 0.532 0.268 0.528 0.000 0.663 0.000 0.365
If your input data set is a presences/absences matrix (like the amphib example dataset), just provide its name to the macoqui function:
macoquires.presabs <- macoqui(amphib)
If your data set is a similarity matrix (like the simil example data), you’ll need to provide also the number of analysed localities (nloc), set isprox to 1 (to specify that the input is a proximity matrix) and provide the significance thresholds for those values (vmax and vmin; type help(macoqui)
for more information):
macoquires.prox <- macoqui(simil, nloc=273, isprox=1, vmax=0.553, vmin=0.445)
To get a friendly ‘macoqui’ output:
ver.matRmacoqui(macoquires.presabs)
ver.matRmacoqui(macoquires.prox)
To get the parameters for chorotype mapping (only available if ‘data’ was a presences/absences matrix) and friendly output:
locs <- locCorot(macoquires.presabs)
ver.matRmacoqui(locs)
For a fuzzy-logic analysis of clusters selected by the researcher, and friendly output:
groups <- c(12,1,12,2,13,1,13,2,15,1,10,1,10,2,17,2)
fuzzyres <- fuzzy.Clusters(macoquires.presabs, groups)
ver.matRmacoqui(fuzzyres)
To get the parameters for cluster mapping, and friendly output:
fuzzylocs <- locCorotGrupos(fuzzyres, groups)
ver.matRmacoqui(fuzzylocs)